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1 Application of EM Algorithm on SLAM

1.1 Data Specification

One of the trick part in application of EM algorithm is to determine what
data is complete and what data is incomplete. According to Cappe and
Moulins [1], as well as original EM publication from Dempster et al. [2],
choice of complete data and incomplete data is usually left to researcher by
intuition, and in general by viewing EM algorithm as latent model, complete
data can consist of censored observations, noise observations and missing
data. In SLAM problem, one intuitive configuration might be specifying
observation O as incomplete data, and robot’s states S as complete data.
This might not be a good choice if we view the EM algorithm from latent
model point of view, because our observation O can be viewed as noise
observations and there exist many-to-one mapping on O to S. Thus, a better
choice would be specifying both observations and states as complete data,
X = {O,S}, and specifying observations also as incomplete data Y = {O}

1.2 Batch EM Algorithm on SLAM

Assume at instant t, φ = [φ1, φ2, ..., φm] are m landmarks in map, st =
[ps, py, θ] is robot’s state. ot = [o1, o2, ..., om] are observations on each land-
marks. k denotes currently the algorithm is at kth iteration. st and ot con-
sists complete data denoted as Xt, ot is also included in incomplete data,
denoted as Yt. In E-step, we can construct Q function as

Q(φ, φk) = E{log [p(s1, ..., st, o1, ..., ot)|φk]|o1, ..., ot}

Which can be simplified using complete data and incomplete data notation
as:

Q(φ, φk) = E{log [p(X)|φk]|Y }
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where

p(X|φk) =
t∏
i=1

p(ot|st, φk)p(st|st−1, φk)p(s0)

p(s0) denotes some prior on robot’s states Q function can be numerically
approximated using E-RTS smoother. In M-step, we can simply find φk+1 =
arg maxQ(φ, φk) using L-BFGS update. The result after numerical approx-
imation is:

Q(φ, φk) = const.− 1
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∑
t

||ot − ht( ˆst|K , φ)||2 + tr(F )

where F represents some numerical term occurred in E-RTS step.

2 Derivation of Recursive EM-SLAM algorithm

2.1 Stochastic Gradient EM algorithm on SLAM

Note that in batch EM approach, we need lots of iterations and makes
batch update on robot’s complete data, as t increases, computational cost
also increases, which makes this approach not difficult to implement in a
real system. A sequential algorithm is derived based on stochastic gradient
EM algorithm, followed by a further modified online version. In this section,
we will abandon all iteration index k, and the number of iteration on EM
is the same as number of observations the robot has taken, denoted as n.
Titterington [3] has proposed first online version of EM algorithm for pa-
rameter estimation, and in SLAM setting, the algorithm can be described
as:

φn+1 = φn + γn+1I
−1(φn)E[∇φ log p(Xn+1|φn)|Yn+1]

Where I represent Fisher information matrix, and γn+1 denotes a deccaying
step size. This equation is in analogy with equation (8) of section 2.2 in
Cappe and Moulins’ derivation [1]. It is also in accordance with the formu-
lation on another recursive EM-SLAM on Multi-Target Tracking proposed
by Frenkel and Feder [3]. Notice that there are two difficulties here: (1)
it is difficult to evaluate the inverse of Fisher information matrix. (2) it is
difficult to calculate the gradient.
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2.2 Re-formulation based on Stochastic Approximation

Due to computational difficulties in traditional formulation in 2.1, here is a
better modification. Consider the following equation:

Q̂n+1(φ) = Q̂n(φ) + γn+1(E[log p(Xn+1|φ)|Yn+1]− Q̂n(φ))

This equation is equivalent to previous formulation in section 2.1 but rather
abandoned difficulties in calculating Fisher information matrix and gradi-
ents. This equation is also subjected to some assumptions and it is of
practical interest only if we can compute Q̂n(φ) efficiently. It is also as-
sumed that the complete data distribution belongs to an exponential fam-
ily. Luckily, Q̂n(φ) can be computed efficiently by numerically estimation
step and E-RTS smoothing process in section 1.2, and robot’s observations
is of Gaussian distribution, which belongs to an exponential family. To be
more specific, E[log p(Xn+1|φ)|Yn+1] can be thought of as a one-step ver-
sion of formulation in section 1.2, which will reduce computation largely.
Where in section 1.2, Q function is formulated in a batch manner by tak-
ing expectation of whole batch of available data. In the new formulation,
the expectation step is simply taking the most recent data Xn+1 and Yn+1

to formulate Q̂n+1(φ) due to we have already calculated Q function Q̂n(φ)
when robot took observation in a previous step.
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