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Abstract—This paper presents a novel collision avoidance
system for autonomous vehicles based on overtaking procedures.
The proposed Overtaking Procedure for Collision Avoidance
Systems (OP-CAS) takes a behavioral cloning-based approach
which uses images obtained out of a low cost monocular camera.
The algorithm selectively records the expert’s corrective driving
behavior during data collection. This is performed recording
oscillatory driving behavior when the vehicle is returning to the
center of the lane. This data augmentation method addresses
the issue of covariate shift commonly found in behavioral
cloning methods. This approach is computationally inexpensive,
making it a viable option for real time embedded deployment.
A feasibility study was performed with two remotely controlled
scaled vehicles as a proof of concept. Results showed that when
two expert drivers demonstrated overtaking behaviors for data
collection, even a small dataset was sufficient to model the
overtaking sequence. The overtaking maneuvers were deployed
in real time on 1/8th scale RC platforms, validating OP-CAS
for civilian vehicle safety applications.

Index Terms—Advanced Vehicle Safety Systems, Autonomous
Vehicles, Convolutional Neural Networks

I. INTRODUCTION

In efforts to mitigate the recent vehicle accidents occurring
with autonomous vehicle testing, collision avoidance systems
(CAS) are becoming an active topic of research. Current
autonomous vehicle platforms capable of level four (SAE
J3016) autonomy require expensive sensing hardware (e.g.
LIDAR), which limit the technology from being ubiquitous.
We propose a monocular camera paired with a graphical
computing unit (GPU) edge device [9] as the only hardware
requirement. This makes the system architecture scalable
towards scaled vehicle platforms, which can perform the
diverse test requirements for robustness before full scale
development. Furthermore, as a measure of safety standards,
we utilize visual inspection of the neural network layers (e.g.
Visualbackprop [4]) to provide the needed observability of
the system model. With this hardware, we propose overtaking
sequences as a means of collision avoidance. The benefit is
that this approach combines local trajectory planning and col-
lision avoidance as a single subsystem. This is a more natural
solution as opposed to modeling collision avoidance and local
path planning separately. There have been many separate
attempts to solve collision avoidance and path planning, but

efforts have not been made to solve them in an integrated
manner. Thus, collision avoidance and local path planning
is a coupled problem which must be solved conjointly, and
overtaking maneuvers provide a solution.

Fig. 1. OP-CAS: Overtaking Procedure Collision Avoidance System
This collision avoidance system uses an overtaking procedure for various
highway collision scenarios, as shown in Case A: ”Overtaking on Straights”
and Case B: ”Overtaking on Corners”

Our paper presents an Overtaking Procedure Collision
Avoidance System (OP-CAS) based on behavioral cloning.



This CAS system designed specifically for hazard highway
scenarios uses overtaking procedures as part of a collision
avoidance maneuver. OP-CAS is effective for two reasons.
First, it integrates three of the four hierarchical layers of
autonomous driving [3] (behavioral decision making, motion
planning and vehicle control) as a joint problem when
route planning is not necessary. This is advantageous to
simple brake based CAS systems which eventually need
a separate motion planner to resume driving. Second, a
monocular camera is only needed for deployment, and can
easily be complemented with additional vehicle state infor-
mation. As a proof of concept, collision avoidance scenarios
were evaluated with two scaled racing vehicles using the
proposed method. Experiments showed that a dataset as
little as 20 minutes was sufficient enough to capture the
overtaking behavior. It is well known that behavioral cloning
(BC) is susceptible towards covariance shift, which result
in compounding trajectory error for the autonomous vehicle
during operation. OP-CAS alleviates this issue by injecting
additional ”lane-keeping” demonstrations (variant of DART
[15]) into the supervisor policy during expert demonstrations
of the overtaking procedure so that the vehicle avoids drifting.
In conclusion, the contribution factors are as follows:
• A novel, behavioral cloning based, CAS architecture

which uses recovery sequences to alleviate covariate
shift.

• A new method which jointly addresses local path
planning and collision avoidance through overtaking
procedures.

• The implementation of a scaled vehicle platform which
can be used as a scalable testbed for traffic optimization
of autonomous vehicles.

II. RELATED WORK

Model-Based Methods: Although there exist many model-
based control methods [13] that attempt to address collision
avoidance, they require expensive computational hardware
for real time deployment. Most systems require knowledge
of the vehicle state (e.g. localization), increasing sensor cost
for collision avoidance maneuvers. [7] Furthermore, while
model-based trajectory planning (e.g. Model Predictive Con-
trol (MPC) [13]) allows the observability often required with
safety critical systems in transportation, non-linear mathemat-
ical modeling of the vehicle dynamics require simplification
for real-time deployment at high speeds, compromising the
robustness of the system. [6] [5]

Model-Free Methods: The idea of autonomous driving us-
ing end-to-end neural networks is not new and dates back to
the 1980s [11]. Recently, significant progress has been made
for this type of image-based autonomous vehicle control
architecture. Unfortunately, it is widely known that vision-
based control architectures alone cannot provide level five
autonomy for civilian vehicles because it does not provide
a means of navigation, although there have been efforts to
alleviate this problem in recent years. [12] This being said,
BC methods can be used for overtaking procedures during
highway CAS scenarios where navigation is not necessary.

Critics argue that using neural networks for safety critical
CAS is unsafe. The crux of the argument lies in the non-
observable nature of end-to-end neural networks. However,
the internal processing behind the neural network architecture
can be analyzed through activations of its salient features [10]
using techniques such as visual back-propagation. [4] Others
argue that mimicking the behavior of other drivers cannot
be based on a robust metric which guarantees a safe driving
model, and lean towards control based methods which offer
observability based on vehicular kinematics. We propose
that the overtaking procedure can be based on data from
professional drivers, whose driving behavior could be cloned
to guarantee a high level of driving safety. Furthermore,
this proposed BC solution can be used as pre-training with
reinforcement learning to ensure optimality of the maneuver.

The main strength of this approach is that it only re-
quires monocular vision for deployment in comparison to
localization-based path-planning methods, and can easily be
integrated with vehicle odometry from additional sensors to
guarantee the required level of functional safety. (ISO26262,
SAE J3092)

Fig. 2. Hardware System Architecture: An HDMI digital wireless transmitter
minimizes latency with a gaming monitor at sub 11ms. An Nvidia Jetson
TX2 board was used as the embedded processor. A CMOS camera with
185 degrees field of view (FOV) provided images at 80 frames-per-second
(FPS).

III. METHODOLOGY

A. Assumptions

The assumption is made that the state information obtained
from fish eye monocular images is sufficiently expressive in
identifying the experts intentions when performing actions.
However, an autonomous vehicle navigating towards different
destinations within the same environment might look at the
same state (e.g. intersection) and be forced to make different
actions (left or right). For collision avoidance overtaking
maneuvers, this assumption is overlooked as navigation is not
needed for local trajectory planning. Also, our deterministic
policy assumes that the expert is able to perform the task of
driving well, although the optimality of this performance is
not guaranteed.

B. Theoretical Objective

We use regression to model an approximator policy πθ̂,
which can approximate the expert policy, πθ∗ for the two



Fig. 3. Neural network architecture used for OP-CAS: The 3D-CNN model consists of an lambda layer to normalize the image pixels, 3 convolutional
layers with 3 hidden layers with a kernel size of 5 x 5 x 5 and a stride of 1 x 2 x 2, then 2 additional hidden layers with a kernel size of 3 x 3 x 3 and
a 1 x 1 x 1 stride. The channels are 24, 32, 64, 64, 64, 64, in descending order. The layers are flattened, passed through a fully connected layer of 1152
units, then converged into a final dense layer of 2 units, representing steering/throttle values. The network has a linear output activation function so the
control values fall into a range of -1 to 1.

dimensional continuous action space R2. This policy πθ̂ :
S → A maps the set of observable states S to a set
of actions A, using weights w of the neural network as
to parametrize θ for the policy space Θ. Here, the trajec-
tory τ of the vehicle consists of n number of state-action
pairs {(x1, a1) , (x2, a2) , · · · , (xT , aT )} over time horizon
T , whose transition probability is assumed to be Markovian.
The probability density p(τ | πθ∗) over the set of trajec-
tories of length t can be expressed as p(x0)ΠT−1

t=0 πθ∗(at |
xt)p(xt+1 | xt, at), where p(x0) is the initial state distribu-
tion. The total cost J(θ, θ∗ | τ), is the sum of the surrogate
loss between the values of approximated steering Ŝt, throttle
Ŝt and the steering S∗t , throttle T ∗t demonstrated by the
expert when the vehicle traverses its trajectory. The steering
and throttle inputs are unit-free and range between -1 to 1.
The numbers directly represent the pulse-width-modulation
signals coming from the Futaba Receiver.

θ̂ = argminθ∈ΘEp(τ |πθ∗ )J(θ, θ∗ | τ)

Where, J(θ, θ∗ | τ) = 1
2N

∑T
t=1 L(ât, a

∗
t )

In short, we create an approximator policy πθ̂, that can
mimic the expert by minimizing the total cost i.e. cost-to-go
using the Euclidean L2 loss function to find the difference
between the expert actions and predicted actions. The loss L
can be expressed as follows:

L(ât, a
∗
t ) = Lsteering + Lthrottle =√∥∥∥Ŝt − S∗t ∥∥∥2

2
+

√∥∥∥T̂t − T ∗t ∥∥∥2

2

C. Overcoming Covariate Shift

A problem with using a loss function as a deterministic
policy is the assumption of covariate shift. [15] We assume
that there is no discrepancy between previously labeled
training images I∗ from training set (I∗, (S∗t , T

∗
t )) and

unseen, unlabeled test images Î . However, this assumption
results in compounding errors [14] which make it hard
for the approximator policy πθ̂ to generalize the task of

driving towards unseen states.Physically speaking, covariate
shift makes the vehicle drift. The DAgger [14] method can
be found to alleviate this issue via on-policy methods by
providing corrections through explicit supervisor labels. This
method was inapplicable for our scenario as the vehicles
moved too fast for the expert to make adequate corrections
real-time for a given overtaking maneuver. The method is
also labor-intensive because it requires multiple iterations of
training and testing. Our proposed OP-CAS algorithm instead
uses a one-shot method for addressing this problem during
training. This method injects ”return-to-lane” trajectories [15]
[12] during expert demonstration.

Algorithm 1 OP-CAS Algorithm
Input: D ← 〈(xt, yt) : ∀n,∀ (xt, yt) ∈ τ∗n,∀t ≥ 0〉

1: inject τ̃n into τ
∗
n

Output: Corresponding action dataset A(D)

1: for t = 1 . . . T do // train with regression
2: xt ← current observation
3: ât ← πθ̂(xt) //query policy for action
4: execute action ât
5: Lt ← observe instantaneous loss
6: end for
7: return

∑T
t=1 Lt //return total loss

As a solution, we present OP-CAS in Algorithm 1, which
uses various overtaking maneuvers for collision avoidance
scenarios. OP-CAS explicitly addresses the issue of the
error term by concatenating an extra set of trajectories τ̃n
which demonstrate lane returning [12] as a variance reduction
technique, so that even when the input images during testing
differ from the training the approximator policy can quickly
recover from covariate shift to avoid the accumulation of
the error. The mechanism behind this noise injection is as
follows:

1) Drive the vehicle in an oscillatory manner.
2) When the vehicle moves out of lane do not record;

when the vehicle moves back into the lane, press a
user-defined button to record the driving behavior.

Further details can be found in section four.



Fig. 4. Overtaking procedures used for OP-CAS: OP-CAS accounts for two cases of different overtaking maneuvers. The map on the right overlays the
trajectory of the overtaking vehicle (red) and the vehicle that is being overtaken (blue).

D. Network Architecture

Three neural network architectures are investigated. The
two dimensional convolutional neural network (2D-CNN)
provides the initial baseline, which correlates steering/throttle
values with a single image frame. Although it has the fastest
deployment speed, it fails to account for temporal information
of the vehicle state. The three dimensional convolutional
neural network (3D-CNN) architecture attempts to incorpo-
rate temporal information by stacking two consecutive image
frames for each control output. The method in which the
images are stacked are described here. [2] Likewise, the
Long-Term Recurrent Convolutional Network (LRCN) [1]
architecture uses Long-Short Term Memory (LSTM) units
to store previous state/action information as memory for the
next control output. The 3D-CNN architecture outperforms
the other two architectures and is selected as the OP-CAS
algorithm. Exponential Linear Unit (ELU) activation function
layers are used to express system non-linearity.

E. Salient Feature Representation

Salient features can be extracted from the convolutional
neural network to represent which particular areas of the
image most influences the algorithm’s control decisions of
steering and throttling. The features of an image which are
most salient towards the control decisions of the OP-CAS
algorithm are highlighted for observation and analysis. This
is performed by using the activations of high-level convolu-
tional feature maps as masks for the low-level convolutional
feature maps. The salient feature activation mask uses a color
scheme to determine which regions of the image are most
important in the decision making process. As seen in the
results, OP-CAS learns how to distinguish the vehicle from
the road as well as the lanes and surrounding environment.
[10]

IV. DATA COLLECTION

The dataset only consists of images correlated with the
steering/throttle commands at each time step. Lane-keeping
trajectories are injected into the BC model by collecting

actions of the driver returning to its desired lane after an
out-of-lane event. Oscillatory driving during this phase is
divided in to large and small oscillations for robustness.
The vehicle repeatedly drives out-of-lane, then returns-to-
lane. The return-to-lane sequence is only recorded with a
hot-key button. This requires quick hand-eye coordination
in addition to driving ability, as the record button needs to
be pressed at the precise moment for robust data collection.
The vehicles are driven at various speeds to allow the model
to fully understand the circuit. Optimal driving behavior is
collected with the lane-keep assist trajectories to imitate the
braking points and turn-in points of critical cornering events.
The dataset uses both solo driving and two-vehicle driving
to clearly separate lane keeping behavior with overtaking
behavior.

• Case A: “Overtaking on Straights”
One of the vehicles are controlled to perform a over-
taking procedure on straights. This is commonly seen
in cases of road obstruction. (e.g. animals, pedestrians)
Other cases involve the vehicle ahead driving too slowly.

• Case B: “Overtaking on Corners”
The overtaking vehicle takes the outside or inside lane
to overtake the opposing vehicle.

160 x 160 pixel size RGB image frames are collected
and down-sampled at 25Hz during dataset collection. Around
80,000 images are collected simultaneously from both vehi-
cles for a 20 minute driving session. Half of the dataset con-
tains 32 expert demonstrations of overtaking maneuvers and
a quarter of the dataset contains the ”lane-keep assistance”
trajectories. Both vehicles were built identically to allow for
transfer learning. Initially, the one vehicle is kept stationary
at different straights and corners to test the robustness of OP-
CAS. The second vehicle is autonomously driven at speeds
slightly slower than the overtaking vehicle after the 40 sta-
tionary laps. Using these methods, two emergency scenarios
are recreated in an attempt to validate the robustness of the
proposed collision avoidance system.



Fig. 5. Salient feature activations (purple) for different neural network architectures. Based on the amount of salient feature activations on the given image,
3D-CNN best distinguishes lanes from cars and from the road external environment.

V. EXPERIMENTAL RESULTS

Experiments are performed to find the best architecture
which can accurately predict throttle and steering values
for a given image. Results show that out of three tested
architectures, (2D-CNN, 3D-CNN, LRCN) the 3D-CNN
model shows the greatest promise in accurately predicting
both steering and throttle values for overtaking maneuvers
and lane-keeping. Experimental results with the lane-keep
assist trajectory injection show that the vehicles perform
substantially better with an increased number of lane-keep
assist demonstrations. Results also show greater stability for
the overtaking maneuver with an increase in the number of
overtaking demonstrations injected to the dataset. Doubling
the number of overtaking demonstrations from 12 to 24
increased the accuracy from 50 percent to 75 percent. This
is promising because it indicates that an increase in data
during training can improve the performance of the OP-
CAS algorithm. Table 1 shows the different neural network
architectures measured against each other using R-Squared
accuracy as a metric. Comparison between different archi-
tectures are also visually inspected by looking at the salient
feature activations of each respective model as shown in Fig.
5. 3D-CNN showed the greatest amount of activations for a
given image and was selected as the OP-CAS algorithm. A
radar speedometer gun is used to measure the top speed of
the overtaking vehicle during the overtaking maneuver. The
positions of the vehicles during overtaking procedures are
captured with ultrasonic indoor positioning beacons (Mar-
velMind) and can be seen plotted in Fig. 4. The results
are promising with the faster vehicle successfully overtaking
the slower vehicle, but further work is necessary as the
overtaking vehicle sometimes fail to stay within lanes after
an overtaking event during corners.

VI. DISCUSSION

The OP-CAS algorithm is able to be functionally imple-
mented on the RC vehicle for overtaking maneuvers. The
vehicles perform overtaking maneuvers for both corners and
straights with over 85 percent accuracy during the experi-
ments using just 20 minutes of data. OP-CAS proves to be
more robust during straights, where it only fails to overtake
once out of twenty attempts. Also, the vehicles are usually

TABLE I
R-SQUARED ACCURACY OF NETWORK ARCHITECTURES FOR OP-CAS

Image Size: 157 x157 Pixels RGB
Type of Architecture Steering (%) Throttle (%)
2D-CNN, 1 Stacked 93 66
3D-CNN, 3 Stacked 98 92
LRCN, 3 Stacked 89 38

TABLE II
VEHICLE-TO-VEHICLE, 20 AUTONOMOUS LAPS

Table Column Head
Driving Scenario Case A Case B

# of Successful Overtakes 19 out of 20 16 out of 20
# of Collisions during Overtaking 1 4

Top Speed during Overtaking 24 (Km/h) 24 (Km/h)

able to keep within the lane before overtaking. Although we
propose OP-CAS, it may be safer to just stop the vehicle,
especially if the preceding vehicle exhibits erratic behavior.
(e.g. driving under the influence.) Also, the importance of
safety must not be downplayed. Therefore, the assumptions
and limiting factors in which the OP-CAS algorithm was
validated will be thoroughly discussed.

First, the OP-CAS algorithm is only verified under the
assumption that the preceding vehicle displays predictive
driving behavior, meaning it keeps within lanes at all times
at constant velocity. (e.g. no emergency braking or lane
changing) Second, only two scaled vehicles are tested on
a simplified rectangular circuit, with both vehicles traveling
in the same direction and a lane always available for use
during overtaking. OP-CAS would need further improvement
for multiple vehicle scenarios. Third, only 20 minutes of
training data is implemented with only 20 test runs to
validate the system due to battery constraints. Fourth, OP-
CAS requires an expert driver dexterous enough to perform
oscillatory driving and selective driver behavior recording to
also demonstrate robust driving. Fifth, it requires the driver to
demonstrate lane keeping behavior at high speeds for diverse
situations. Last but not least, this validation was done on
scaled vehicle platforms, which may not represent full scale
vehicle dynamics.

If OP-CAS were to be validated for real world applications,
a more thorough validation study would have to involve



real vehicles being tested with larger batches of training
data on diverse environmental conditions (e.g. snow, glare,
opposing vehicles) for the algorithm to be robust for civilian
automotive applications.

In a high speed environment, the state of the car has tem-
poral features during acceleration, braking or even steering.
The 2D-CNN algorithm does not account for this temporal
information because it acquires single static images as input
and does not use a recurrent neural network as time- dis-
tributed memory. The LRCN model also has considerably
more activated pixels when applying the deconvolution for
the salient features. However, the LRCN model does not
outperform the OP-CAS model. The 3D-CNN architecture
used for OP-CAS proved to perform reasonably well at
predicting the throttle input actions from the training data
as seen in Table 1.

The computational power of the embedded processor re-
stricts how fast it takes for the model to predict action
commands. Due to these limitations, once the vehicle reaches
beyond its top speed of 24 km/h, the vehicle has trouble
exhibiting robust driving behavior. The challenge of oscilla-
tory driving at high speeds is met by separating the training
phase for lane departure and overtaking maneuvers. Second,
the oscillatory driving required for learning lane departures
is kept to a minimum and performed mostly at low speeds.

The salient features of the three algorithms are visualized
in purple and in blue. The purple and blue salient feature
masks are the areas that the OP-CAS algorithm uses to
output action commands. It should be noted that OP-CAS
only considers the surface of the floor as relevant; it does not
show activations both on the environment or on the vehicle.
Furthermore, the purple and blue colors clearly show that
the algorithm is able to distinguish the split lanes and the
surfaces which do not belong to the road lanes. The blue color
indicates that OP-CAS uses more lower-level and higher-level
convolutional feature maps for the split lanes and off-road
surfaces when compared to the purple activations.

VII. CONCLUSION

We propose OP-CAS, a real-time collision avoidance sys-
tem using overtaking maneuvers. This research has a broader
reader impact in that it outlines a method of alleviating
covariate shift for behavioral cloning, which may be utilized
for not just driver behavior modeling, but also other behavior
prediction tasks. For example, this method can apply towards
prediction tasks such as walking or arm manipulation. If we
know how the system will behave in a failure event; e.g.
tripping or dropping an object, an early recovery sequence
can be augmented into the dataset just like the proposed OP-
CAS algorithm. Furthermore, this work also details the build
of a scaled vehicle research platform which could be used
to test a diverse range of ADAS algorithms. Finally, further
work is necessary with more data collected for training,
also incorporating scenarios involving more diverse traffic
conditions. As future work, OP-CAS may also be incorpo-
rated with a Unity simulator for trajectory optimization using
reinforcement learning for future work.
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